MATH20132 Calculus of Several Variables.

Problems 9 Lagrange's Method

1. For $\mathbf{x} \in \mathbb{R}^{2}$ let $f(\mathbf{x})=x^{2}-3 x y+y^{2}-5 x+5 y$
i. Find the critical values of $f(\mathbf{x})$ in \mathbb{R}^{2},
ii. Find the critical values of $f(\mathbf{x})$ restricted to the parametric curve $\left(t^{2}, t^{3}\right)^{T}, t \in$ \mathbb{R},
iii. Find the critical values of $f(\mathbf{x})$ restricted to the level set $x+6 y=6$ (use Lagrange's method).
2. i. Find the minimum value of $3 x^{2}+3 y^{2}+z^{2}$ subject to the condition $x+y+z=1$.
ii. Find the maximum and minimum values of $x y$ subject to the condition $x^{2}+y^{2}=1$.
iii. Find the minimum and maximum values of $x y^{2}$ subject to the condition $x^{2} / a^{2}+y^{2} / b^{2}=1$ (where a and b are positive constants).

3 Find points on the circle $(x-2)^{2}+(y+1)^{2}=4$ which are a maximum and minimum distance from the origin.

Hint consider the square of the distance.
4. Find the minimum distance from the point on the x-axis $(a, 0)^{T} \in \mathbb{R}^{2}$ to the parabola $y^{2}=x$.
5. Find the extremal values of $f(\mathbf{x})=x y+y z, \mathbf{x} \in \mathbb{R}^{3}$ on the level set

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
y z-x & =0 .
\end{aligned}
$$

6. Find the maximum and minimum values of $4 y-2 z$ subject to the conditions $2 x-y-z=2$ and $x^{2}+y^{2}=1$.

7 Find the minimum distance between a point on the circle in \mathbb{R}^{2} with the equation $x^{2}+y^{2}=1$ and a point on the parabola in \mathbb{R}^{2} with the equation $y^{2}=2(4-x)$.
8. An ellipse in \mathbb{R}^{3} is given by the equations

$$
\left\{\begin{array}{r}
2 x^{2}+y^{2}=4 \\
x+y+z=0
\end{array}\right.
$$

The intersection of a cylinder with a plane.
Use the method of Lagrange multipliers to find the points on the ellipse which are closest to the y-axis.
(This is a question from the June 2012 examination which turned out to be too difficult! It should be alright away from the pressure of the examination room. When you come to solving a system of equations remember to focus on finding x, y and z, i.e. remove the Lagrange parameters λ and μ as soon as possible.)

Additional Questions

Solutions have not been written up for all of the following.
9 Show that $x y$ has a maximum on the ellipse $9 x^{2}+4 y^{2}=36$ and find it's value.

10 Find the maximum and minimum values of

$$
x^{2}+y^{2}+z^{2}-x y-x z-y z
$$

subject to the condition

$$
x^{2}+y^{2}+z^{2}-2 x+2 y+6 z+9=0 .
$$

11. Find the shortest distance from the origin to $x^{2}+3 x y+y^{2}=4$.
12. Find the shortest distance from $(0,0,1)^{T}$ to $y^{2}+x^{2}+4 x y=4$ in the $x-y$ plane.
13. A cylindrical can (with top and bottom) has volume V. Subject to this constraint, what dimensions give it the least surface area?
Idea of solution If the cylinder of height h and radius r the area is $2 \pi r h+$ $2 \pi r^{2}$ and volume $\pi r^{2} h$. So the essence of the question is to minimise $r h+r^{2}$ subject to $\pi r^{2} h=V$.
14. Find the nearest point on the ellipse $x^{2}+2 y^{2}=1$ to the line $x+y=4$. Idea of solution If $(x, y)^{T}$ is a point on the ellipse and $(u, v)^{T}$ a point on the line then $(x-u)^{2}+(y-v)^{2}$ is the square of the distance between the two points. So need to minimise $(x-u)^{2}+(y-v)^{2}$ subject to $x^{2}+2 y^{2}=1$ and $u+v=4$.
15. How close does the intersection of the planes $v+w+x+y+z=1$ and $v-w+2 x-y+z=-1$ in \mathbb{R}^{5} come to the origin?
Idea of solution To minimise $v^{2}+w^{2}+x^{2}+y^{2}+z^{2}$ (the square of the distance of $(v, w, x, y, z)^{T}$ from the origin) subject to $v+w+x+y+z=1$ and $v-w+2 x-y+z=-1$. The answer is $\sqrt{612} / 36$.
16. Let x_{1}, \ldots, x_{5} be 5 positive numbers. Maximise their product subject to the constraint that $x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+5 x_{5}=300$.
17. Find the distance from the point $(10,1,-6)$ to the intersection of the planes $x+y+2 z=5$ and $2 x-3 y+z=12$.
18. If a and b are positive numbers find the maximum and minimum values of $(x v-y u)^{2}$ subject to the constraints $x^{2}+y^{2}=a^{2}$ and $u^{2}+v^{2}=b^{2}$.
19. Find the dimensions of the box parallel to the axes of maximum volume given that the surface area is $10 \mathrm{~m}^{2}$.
Idea of solution If x, y and z are the lengths of the sides of the box then the volume is $x y z$ and the surface area $2(x y+y z+x z)$. So maximise $x y z$ subject to $x y+y z+x z=5$.
